(-80000/x^2)+1=0

Simple and best practice solution for (-80000/x^2)+1=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-80000/x^2)+1=0 equation:



(-80000/x^2)+1=0
Domain of the equation: x^2)!=0
x!=0/1
x!=0
x∈R
We get rid of parentheses
-80000/x^2+1=0
We multiply all the terms by the denominator
1*x^2-80000=0
We add all the numbers together, and all the variables
x^2-80000=0
a = 1; b = 0; c = -80000;
Δ = b2-4ac
Δ = 02-4·1·(-80000)
Δ = 320000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{320000}=\sqrt{160000*2}=\sqrt{160000}*\sqrt{2}=400\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-400\sqrt{2}}{2*1}=\frac{0-400\sqrt{2}}{2} =-\frac{400\sqrt{2}}{2} =-200\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+400\sqrt{2}}{2*1}=\frac{0+400\sqrt{2}}{2} =\frac{400\sqrt{2}}{2} =200\sqrt{2} $

See similar equations:

| 5x+550=10x | | -2p-3(5-3p)=4(p-4)-8 | | F(3÷x-2)=12-3x^2 | | 8+7r=8r+5 | | 3a=16=7a | | -6(u-3)=-2u-10 | | 7/6d=-1/3 | | .2(w-5)=7w+4-5w | | 3(2x-7)=5(4x+10) | | 5^2x=29 | | 8x-65=11-11x | | -0.4z+2=4.2 | | 3a-12+5a=12 | | 4-6^(x)=15 | | (3x)(x)=45 | | 10+1/3x=1 | | 11/5=2p/7 | | 3(4x-6)=1/3(12x-9)+9 | | 3+2x=5x+6 | | 2(x+3)=7x+4 | | t+10=7-24 | | 8c-7=35+38 | | h=1,3,6,8 | | 3.5y+8=12.5-y | | F(x)=(x+5)(X+11) | | -14x^2+84x+60=0 | | 3.5y+8=12.5y | | 5x-65+3x=2-11x+9 | | F(x)=(x+5); | | (x-5)^2=48 | | -1÷-5/8=x | | -(7-7a)-(13+6a)-17=-(6-6a)+(-a)+5 |

Equations solver categories